- 7. Based on the equation $\Delta E = -2.0 \times 10^{-18} \text{ J} (1/n_2^2 1/n_1^2)$ the wavelength of the light that must be absorbed to excite hydrogen electron from level n = 1 to level n= 2 will be (h = 6.625×10⁻³⁴ Js, C = 3×10⁸ ms⁻¹)
- (1) 2.650×10⁻⁷m
- (2) 1.325×10⁻⁷m
- (3) 1.325×10⁻¹⁰m
- (4) 5.300×10⁻¹⁰m

Solution:

 $\Delta E = -2.0 \times 10^{-18} \text{ J} \left(1/n_2^2 - 1/n_1^2 \right)$

$$= -2.0 \times 10^{-18} (1/2^2 - 1/1^2)$$

$$= -2.0 \times 10^{-18} (1/4 - 1/1)$$

$$= -2.0 \times 10^{-18} (-3/4)$$

Also ΔE = hc/λ

So
$$\lambda = hc/\Delta E$$

 $= 6.625 \times 10^{-34} \times 3 \times 10^{8} / 1.5 \times 10^{-18}$

=13.25×10⁻⁸

= 1.325×10⁻⁷m

Hence option (2) is the answer.